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Abstract. We study the collective excitation spectrum of a No-dimensional charged Bose gas 
interacting via long- and sholf-range potentials. The resulting plasmon dispersions depend on the 
type of internction. Extending our results to a double-layer system. we calculate the dispersion 
relations of ensuing optical and acoustic plasmons, and screened interactions. The effective 
interactions exhibit amactive parts which may have interesting consequences. Comparison of 
our results with a two-dimensional electron gas is made 

1. Introduction 

There has been an intense interest in low-dimensional electron systems in recent years. The 
discovery of the quantum Hall effect led to a surge of investigations in this area which are 
still unabated. The discovery of high-temperature superconductivity in layered compounds 
has further contributed to both theoretical and experimental activities on single-layer and 
coupled layer electron systems. It may be noted in this connection that a strictly two-layer 
system has been found to exhibit high-T, superconductivity. Curiously, the developments in 
superconductivity research have also revived an interest in a system which received attention 
prior to the BCS theory of low-T, superconductivity. This is the charged Bose gas (CBG) 
which may be regarded as the Bose counterpart of the electron gas (i.e., charged particles 
obeying Bose statistics). Although studies of the CBG did not lead to the BCS theory, 
they conhibuted to our understanding of some important aspects of superconductivity, e.g., 
the Meissner effect. Early accounts of the CBG in the context of superconductivity may 
be found in the literature [l]. The CBG was again pursued, long after the BCS theory, 
as a model many-body system [2]. The ground state energies as a function of the density 
parameter r, (see below) and also screening properties of an electron gas and a CBG make 
an interesting comparison. We remark that although the electron gas has been amply realized 
in a laboratory, the same cannot be said about the CBG. Injecting deuterium up to a high 
density into metals l i e  palladium or vanadium may be a promising effort to generate a 
CBG. In connection with high-T, superconductivity a two-dimensional Bose gas either with 
a coulombic interaction [3] or a more complicated gauge field interaction [4] has recently 
been considered. 

Many-body approaches to the various properties of a CBG amount to a wealth of 
literature [5].  The dielectric properties of a two-dimensional (2D) CBG at finite temperatures 
were considered by Hines and Frankel [6]. The question of effective screening in a 2D Bose 
gas with weak interparticle repulsion (dipole interaction) has recently been addressed [7] 
with application to excitonic systems. 
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Advances in the growth techniques of semiconducting materials have made the 
fabrication of doublelayer electron systems possible. These novel structures exhibit 
a number of effects due to interlayer Coulomb interactions [8]. Newly observed 
fractional quantum Hall states (when a perpendicular magnetic field is applied), interesting 
transport properties associated with interlayer Coulomb drag, and the possibility of Wigner 
crystallization are important examples. 

In view of the above-mentioned current interests we have been motivated to make a 
comparative study of two important many-body properties of an electron gas and a CBG in 
reduced spatial dimensions. The two properties we set out to investigate are (i) collective 
modes and (ii) screened interactions. In particular, we investigate a singlelayer, two- 
component CBG interacting via long-range Coulomb and short-range contact interaction, 
and compare our results with those for an electron gas. We then discuss the plasmon 
dispersions and screened interactions in a double layer of charged bosons. 

The plan of the rest of this paper is as follows. In section 2 we discuss the plasmon 
dispersion relations of various 2D charged Bose systems. Screened interaction in a double- 
layer CBG and electron gas are compared in section 3. Discussion of our results and a short 
summary is given in section 4. 

2. Collective modes of a 2D charged Bose system 

We consider a ZDCBG, and, in analogy with the jellium model of an electron gas, we 
envisage a uniform neutralizing background. At zero temperature, the system is assumed 
to be in the condensate phase. The density-density response function for an interacting 
system of charged bosons within the random phase approximation (RPA) is given by 
x ( q ,  o) = xo(q .  w ) / [ l - u ( q )  x o ( q .  o)], in which the response function for a non-interacting 
system at T = 0 is 

with the free-particle energy E~ = q2/2m, and q a positive infinitesimal quantity. We remark 
that the above RPA expression [6] is exact at T = 0. The bare Coulomb interaction is simply 
u(q)  = 21rez/q for a 2D system. The plasmon dispersion for a 2DCBG is obtained from 
the poles of the RPA density-density response function, yielding the Bogoliubov result 

(7.1 
with x = q / q s ,  and E3 = q:/2m. Here we have defined the screening wave vector 
of the Bose condensate qs = ( 8 1 r n / U ~ ) ' / ~ .  Defining a dimensionless density parameter 
r," = I/(nnas),  where U B  is the effective Bohr radius, and n is the 2D density of the 
boson, we can express the screening wave vector as q,UB = Z/r?. Note that the above 
dispersion law within the RPA behaves like opl - x I / z  in the long-wavelength limit similar 
to the 2D electron gas result, and exhibits a freeparticle-like behaviour for large wave 
vectors. 

The density-density response function (matrix) for a two-component or two-layer system 
is given by 

opl(q) = E, [ X  + x 4 P  

in the RPA. The RPA takes account of dynamic screening but does not include the corrections 
due to exchange and correlation effects associated with charge fluctuations in the system. 
The collective modes of the system are obtained by solving det Ix-ll  = 0. 
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We first discuss the collective excitations of a single-layer, two-component charged 
Bose system. In this case, U ] ]  = U I Z  = VU = 2ne2/q where we have assumed that 
particles interact via the long-range Coulomb potential. We also assume equal number 
density n for both species. The charged bosons only differ in their masses mt and m2, for 
which we define S = m l / m 2 .  The non-interacting susceptibilities at T = 0 are given by 

different species. 
The structure of the density4ensity response function, as given by (3), allows an exact 

solution for the collective modes. They are obtained from the roots of the quadratic equation 
for mil 

&(q,  0 w) = 2nceq/[(w+ ill)' - E & ] ,  where eUq = q2/2m, are the free-particle energies for 

w;, - ((1 + P ) x 4  + (I t s)x]w;,  + [ P x *  + S(1-k S)x5] = 0. (4) 

The long-wavelength limit of the collective excitations yields the following plasmon 
dispersion relations: 

in which the plasmon energies are in units of E$ = q:/2ml. The screening wave vector 
for a two-component system is defined as q: = 8 ~ e ~ n m l .  In figure l(a) we display the 
collective modes of a two-component, single-layer charged Bose condensate with mass ratio 
S = a.  The solid lines are the full solutions: upper and lower curves indicate wkf) and w:'. 
respectively. Also shown by dotted lines are the long-wavelength approximations. 
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Figure 1. Collective modes of a single-layer, tw*component Bore system w i t h  mass ratio 
6 = a .  (a) Collective modes (solid lines) in a charged Bore gas interacting via Coulomb 
potential. (b) Colleuive modes (solid lines) of a Bose system interacting with a shon- 
range potennd of strength y = f .  In both cases. dotted lines indicate the long-wavelength 
approximation to the exact collective excitations. 

It is of interest to see how the interparticle interaction affects the collective modes. 
We have already considered a long-range (Coulomb) interaction. We now consider a two- 
component, single-layer Bose system where the particles interact via a short-range (in fact, a 
zero-range), contact potential. This means that uI1 = V I Z  = uZz = UO, where ug is constant. 
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Defining a dimensionless quantity y = 2nuo/E,, collective excitations are obtained from 
the solution of 

U;] - [ (1+6~)X4+y( l+6)X]w; ,+ I6*x*+6y( l  +S)X61 = o  (6) 
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from which we obtain in the long-wavelength limit 

0;) N J m x  

w$) E d x 2 .  
(7) 

Figure l(b) shows the collective modes of a two-component, single Base system interacting 
via a short-range otential. The solid lines represent the full solutions; the upper and lower 
curves indicate OJ!) and 0;). respectively. The dotted lines represent the long-wavelength 
approximations. It is interesting to note that the second mode U? in both cases (long 
range and short range) has the same dispersion, which is free-particle-like, U,,] - xz, 
whereas the first collective mode wkf) depends on the interaction type. We point out that in 
the corresponding system of a two-component electron gas layer interacting via Coulomb 
potential, the second plasmon mode displays [9] an acoustic dispersion. i.e., wpr - x .  

We believe that the difference between the dispersion characteristics of the collective 
modes for fermion and boson systems arises due to statistics (for the same interparticle 
interaction) and multicomponent nature. For a singleparticle system one does not find 
this difference. It may be recalled that the dispersion characteristics are a consequence 
of the phase space restriction. Statistics partly contributes to this restriction. Now, for 
multicomponent systems the collective mode dynamics is more involved and the effect of 
statistics is also present. Therefore we find the difference for multicomponent systems. It 
should be noted that for ml = m2 the second solution in equation (5) should be discarded 
because we than have an effectively one-component system. 

In order to explore further the argument that the difference i n  dispersion characteristics 
is due to a combination of statistics and multicomponent naturc, we briefly discuss our 
results in connection with the case of a classical two-component plasma. Vignale [9]  has 
shown that a two-component electron liquid (in which there are light and heavy electrons 
interacting via Coulomb potential) has collective modes U;;) - q1l2 ,  and U(') - q in the 
long-wavelength limit. We observe that the influence of statistics is reflected in the second 
mode. In the Fermi statistics (electron gas), the second plasmon mode is acoustic-like, 
whereas in the Base statistics it is  free-particle-like, In a classical two-component plasma 
(at T = 0) there is only one collective mode which is given by o:I = w: + m i ,  where w ,  
and w2 are individual plasma frequencies. Thus in the appropriate limit, the first collective 
modes of  two-component Fermi and Base systems coincide with the classical result. 

Having considered a single-layer system, we now move on Lo a doublelayer charged 
Base gas system. A double layer is a charge-separated system and may also not viewed as 
a strictly 2D system. We first look at two identical layers with the same number density 
n. The intralayer Coulomb intcraction is ulI = u22 = 2rtez/q, whereas the interlayer 
interaction is u12 = UZI = u11 e-qd, in which d is the interlayer separation. The collective 
modes of a double-layer system are given by [lo] 

(8) 

P! 

[x(l  i e-") + x4l1I2 &2) = 

where d = dq,. In the long-wavelength limit the plasmon dispersions are 

U;;, rr J i X ' l Z  

up1  0) - - & x .  
(9) 
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The first of  these modes is labelled the optical plasmon, and the second one the acoustic 
plasmon. If we now consider the more general case of two non-identical layers with different 
densities and particle masses, the resulting equation that yields the collective modes is 

U;] - [(I + P)x4 + (I  + ~ / y ) x ] o ~ ~  + [ P x 8  + 6 ( l / y  + s)x5 + (I  - e-b')6x2/yl = 0. 

The long-wavelength plasmon excitations have the form 
(10) 

where we have used S = ml/mz and y = n l / n 2 .  and also assumed that x i  << 1. We note 
that optical-acoustic plasmon identification of the modes persist, similar to the analogous 
case in double-layer electron systems 11 11. We show in figure 2 the full (solid lines) and 
long-wavelength forms (dotted lines) of collective excitations of a two non-identical layers 
of a Bose condensed system with mass ratio 6 = a. The upper and lower curves indicate 

and o$), respectively. We took for illustration purposes y = 1 and 2 = 1. 
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Figure 2. Collective modes of a double-layer. IWO-COmpOnent charged Bore gas, for the m a s  
ratio 6 = 4, and layer separation q,d = 1 .  The upper and lower curves (solid lines) indicate 
the optleal and acoustic plasmons, respectively. The dotted l i e s  ue the long-wavelength 
approximation. 

3. Screened interactions 

We now turn our attention to the screened interactions in double-layer systems. We shall 
be concerned only with static interactions. For a two-layer system (Bose or Fermi) the 
screened interactions may be written in matrix notation 

where the elements of the static dielectric function are defined as & i j ( q )  = 6;j  - u j j ( q )  xp(q). 
Here the static susceptibility is related to the zero-frequency limit of the dynamic 
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susceptibility, i.e., xO(q) = xo(q, w = 0). For non-identical layers there arc four distinct 
screened interactions (two interlayer and two intralayer). For two identical charged Bose 
layers, we have the screened interlayer interaction given as 

B Tanatar and A K Das 

and the intralayer screened interaction given as 

Scaling all length parameters with the screening wave vector qs, we obtain the following 
expressions for the static response functions in a two-layer charged Bose system within the 
W A  

& , I @ )  = 1 + l/x3 
-xi 3 (1% 

The real space expressions for the screened interactions are obtained by Fourier 
transformation, 

= e  /x . 

where Jo(x) is the zeroth-order Bessel function of the first kind. Note that in the above 
expressions as d >> 1, V;: approaches the single-layer result of Hines and Frankel [6]. 
We show in figure 3 the screened interactions for a two-layer Bose condensate. The intra- 
and interlayer interactions are depicted by solid and dashed lines, respectively. Also shown 
for comparison (dotted line) is the bare Coulomb potential. We observe that unlike the 
Coulomb - l / r  potential, the screened interactions exhibit a short-range attractive part. 
The attractive potential of the intralayer interaction is largely independent of the layer 
separation, whereas the interlayer interaction decreases in magnitude as q,d >> 1. We also 
note that the interlayer screened interaction remains finite at r = 0. in contrast to the I / r  
singularity in the intralayer interaction. Hines and Frankel [6] have shown that the statically 
screened interaction in a single-layer system behaves as - l / r7  for large distances. We 
surmise that our intralayer interaction V;f(r) should exhibit a simiIar behaviour. 

In the case of a two-layer electron system the static dielectric functions are given by 

where f(x) = I/x - O ( x  - I ) m / x z ,  in which x = q/2kF and O(x) is the unit step 
function. The screened interactions for a double-layer electron gas has been considered by 
Zheng and MacDonald [121, Szymahski et al [13], and Cordes and Das [14]. The screened 
interactions have the same formal expressions as those for charged bosons, and their Fourier 
transform gives 
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Figure 3. Statically screened inoalayer (solid lines) and interlayer (dashed lines) Coulomb 
interactions in a double-layer charged Base gas. for layer sepantions (a) q,d = 0.5, and 
(b) q,d = 1. Dotted lines indicate the bare Coulomb potential. 
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Figure 4. Statically screened intralayer (solid lines) and interlayer (dashed lines) Coulomb 
interactions in a double-layer electron gas, at r, = I, and layer separations (a) 2kpd  = 0.5, and 
CO) ZkFd = 1. Doaed lines indicate the bare Coulomb potential, 

In the above expressions i: and d are quantities in units of 2 k ~ .  We show for comparison 
in figure 4 the screened inter- and intralayer interactions for a double-layer electron gas 
by dashed and solid lines, respectively. The dotted curve indicates the bare Coulomb 
interaction. The screened interactions have certain noteworthy features, and the Bose and 
Fermi cases (figures 3 and 4, respectively) make an interesting comparison. Each of the 
screened potentials develops an attractive well which is deeper for the intralayer interactions. 
Note that the attractive wells (for either intralayer and interlayer) are stronger in the Bose 
gas than in the Fermi case. However in the Fermi (i.e., electron gas) case the V"(r) develop 
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weakly oscillatory tails. We believe these are Friedel-type oscillations (related to the Fermi 
surface). The oscillatory tails may be weaker than in the pure 2D case. It is also to be 
noted that for a weaker interlayer coupling (p,vd = 1 and 2kFd = 1) the P ( r )  seem to 
lose their hard-core character. The above features of the screened interactions may have 
relevance to superconductivity in layered compounds. 

4. Discussion 

In contrast to the corresponding case of 2D electron gas, there is no Landau damping within 
the RPA for the charged Bose gas as may easily be seen from (1). Damping may be induced 
by disorder or thermal scattering. The finite-temperature dielectric function of a 2D charged 
Bose gas has been considered by Hines and Frankel [6] and recently by Kachintsev and 
Ulloa [7]. At T = 0, damping will arise from higher-order diagrams [5] (beyond RPA) for 
the polarizability ,y (q, w) .  

We have based our treatment of the collective mode spectrum of a ZD charged Bose gas 
on the RPA. This approach when applied to the high-density electron gas has been found 
to describe the dielectric properties quite well. As the density is lowered in the charged 
particle systems, corrections to the WA become important. A convenient way of accounting 
for such corrections is through the local field factor G(q)  in the static approximation. It 
takes the exchange and correlation effects into account, and may be incorporated within our 
theoretical scheme by making the replacement q j ( q )  + vi,(q)[l - Gij(q) l .  The effects of 
local field corrections on the plasmons in a charged Bose gas have been studied by Gold [IO]. 
It was pointed out by Gold [lo] that a roton-like structure appears in the plasmon dispersion 
with the inclusion of local field factor G ( q ) .  The role of static local field corrections in 
a 3DCBG, comparing various approximation schemes, has recently been investigated by 
Conti et al [15]. 

We have considered a 2D charged Bose gas at T = 0, where the system is in the 
condensate phase. The depletion of the condensate at low temperature due to interactions 
was calculated using renormalization group techniques [16]. From a different point of view, 
we might take the distribution function of the charged Bose gas to be [I71 

f ( k )  = noS(k )  + N(Ekr P )  

where the first term describes the particles in the condensate (temperature independent), 
and the second term describes the non-condensed particles. N ( E K ,  p )  = [eb(fk*-@) - 11-’ is 
the momentum distribution of the non-condensed particles at a given temperature T ,  and 
chemical potential p. Hines and Frankel 161 and Kachintsev and Ulloa [7] use this second 
part of the momentum distribution to investigate certain properties of the dielectric function 
of 2D charged bosons. Note that the imaginary part of the collective mode that Hines and 
Frankel [6] discuss is due to thermal effects only. 

In summary we have studied the collective mode dispersions of a ZD, single- and double- 
layer charged Bose gas. In the case of a two-component singlelayer system, we have found 
that the collective excitations display behaviour different from the corresponding electron 
system. A double-layer CBG, on the other hand, exhibits plasmon dispersions similar to 
those of an electron gas. We have considered the screened interactions within the RPA 
using the static dielectric function. Statically screened interactions of a double-layer CBG 
show a marked difference from the bare Coulomb interaction. Our results could be helpful 
in distinguishing the Fermi liquid and Bose liquid models of high-?; superconductivity. 
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